Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity
نویسندگان
چکیده
Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell.
منابع مشابه
Effect of Anti-CD3/CD28 Dynabeads and Allogeneic PBMCs on Expansion of Anti-MUC1 Chimeric Receptor T Cells
Background and purpose: In recent years, immunotherapy using chimeric antigen receptor T cells (CAR T cells) has been considered as a novel and promising treatment for some diseases, especially cancer. The CAR T cell production is a multi-step, complex, time-consuming, and costly process. One of the most important steps in production of CAR T cells is expansion of these cells at appropriate num...
متن کاملEngineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor
Background: Recently, modification of T cells with chimeric antigen receptor (CAR) has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a single-chain variable domain fragment (scFv). Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a spe...
متن کاملAdvancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects
Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...
متن کاملمقایسه عملکرد چهار سلول T مهندسیشده با رسپتور کایمریک حاوی نانوبادی ضد HER2 در مواجهه با سلولهای سرطانی سینه
Background and Objective: Harnessing immune system and its powerful arm, T lymphocytes, against tumor cells are yielding promising results in cancer immunotherapy. Using two arms of immune system in the designing of engineered T cells expressing chimeric receptors with anti-HER2 nanobody (camelid single domain antibody) seems to be an effective strategy in the targeted cancer therapy. ...
متن کاملPriming Hepatitis B Surface (HBsAg)- and Core Antigen (HBcAg)-Specific Immune Responses by Chimeric, HBcAg with a HBsAg ‘a’ Determinant
We developed an immunogen to stimulate multivalent immunity against hepatitis B surface antigen (HBsAg) and hepatitis B core antigens (HBcAg). Immune responses specific for both HBsAg and HBcAg play an important role in controlling the infection. HBsAg-specific antibodies mediate elimination of virions at an early stage of infection and prevent the spread of virus. The immunogen was constructed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 115 شماره
صفحات -
تاریخ انتشار 2018